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Abstract 

W e  provide a n  overview of the Automated Software 
Development Workstation Project, an effort to explore 
knowledge-based approaches to  increasing software 
productivity. The project, focuses on applying the 
concept of domain-specific automatic programming 
systems (D-SAF'Ss) to application domains at NASA's 
Johnson Space Center. We describe a version of a D- 
S A P S  developed in the Phase I of the project for the 
domain of Space Station momentum management, and 
discuss how problems encountered during its 
implementation have led us to concentrate our  efforts on 
simplifying the process of building and extending such 
systems. We propose to d o  this by attacking three 
observed bottlenecks in the D-SAPS development process 
through the increased automation of the acquisition of 
programming knowledge and the use of an object- 
oriented development methodology at all stages of 
program design. We discuss how these ideas are being 
implemented in the Bauhaus, a prototype CASE 
workstation for D-SAPS development. 

1. Increasing software productivity 

through domain-specific automatic 
programming 

Software development has come under criticism as an 

increasingly serious bottleneck in  the construction of 

complex automated systems. Increasing the reuse of 

software designs and components has been viewed as an 

important way t o  address this problem, possibly 

increasing productivity by a n  order of magnitude or 

more 19). A promising approach to  achieving software 

reusability is through domain-specif ic autonzutic 

programming. 

Domain-specific automatic programming systems (D- 

SAPS) use application domain knowledge to automate 

the refinement of a program description (written in a 

high-level domain language) into compilable code 

(written in a procedural target language) [I]. D-SAF'Ss 

can be distinguished from the more traditional domain- 

independent automatic programming systems in t h a t  the 

specification of the  program is in a domain-specific 

language accessible to a n  end user, rather than a formal 

specification language (e.g. the predicate calculus with 

equality). Application generators of the type used in 

business report generation (e.g. Focus and DBASE-11) are 

examples of D-SAF'Ss in which the refinement process is 

completely automatic and implemented procedurally 

[IO]. More complex domains can be handled if the  user 

is allowed to interact with and guide the refinement 

process. Prototype knowledge-based systems that 

support user interaction and which work for practical 

application domains have been successfully developed 

(e.g. Draco [lS], @NIX [3], and KBEmacs [25]). 

2. The Automated Software Development 
Workstation Project 

Since the fall of 1985, Inference Corporation has been 

involved in an effort, sponsored by NASA's Lyndon 

B. Johnson Space Center, to explore the applicability of 

domain-specific automatic programming to  NASA 

software development efforts. Phase I of t h r  project 

focused on the development of a D-SAPS for the domain 
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' o f  Space Station momentum management [IS]. During the  D-SAPS development process tha t  lead to these 

Phase I, A prototype D - S M S  was constrUCtetJ, observations. 

comprised of: 
3. Addressing the bottlenecks in D-SAPS 

0 a components catalog of FORTRAN 
subroutines used in the construction of Space 
Station orbital simulations; 

a design catalog of programs implemented 
using the system; 

a interactive graphical design system using a 
dataflow specification language for design 
editing and components composition; 

code generators for component interfaces, 
numerical subroutines and main programs; 
and 

a rule-based expert that: 

o proposed refinements for 
unimplemented modules in the dataflow 
specification; 

o flagged inconsistencies at manually- 
specified component interfaces; and 

o suggested possible workarounds to 

development 
W e  have focused on three bottlenecks in  the  D-SAPS 

development process that  were observed during the 

development of the Phase I system: 

0 developing a domain language; 

0 describing design refinements and constraints; 
and 

describing the generation of target language 
code from a sufficiently detailed program 
description. 

We plan to reduce the effort spent on each of these tasks 

by: 

0 automating the programming knowledge 
acquisition process; and 

using an object-oriented development 
methodology at all stages of the program 
design process. 

We are currently implementing a knowledge-based D- 

S A P S  development workstation, called the Bauhaus, t h a t  

'I patch 
system conversion routines). 

inconsistencies (e.g . coordinate 

The system was implemented by hand, to serve as a 

model for the implementation of similar D-SAPS for 

other NASA domains. The functionality and 

performance of the prototype was adequate to  

demonstrate the applicability of the D-SAPS approach 

to  software development a t  NASA JSC. However, 

reflecting on our experience in building this system led 

lis to be i n  accord with other D-SAPS developers i n  

noting that  : 

0 "domain analysis and design is very hard" 
[16]; and 

0 "domain-specific systems can be quite useful 
within their range of application, but  the 
range is often quite narrow" [2]. 

We feel that, these two issues must be addressed if D- 

S A P S s  are to play a significant role in future software 

development environments. Therefore, in Phase I1 of the 

project, we are attempting to  address the bottlenecks in 

will embody these two approaches. We now describe how 

the design of the Bauhaus addresses the perceived 

bottlenecks. 

3.1. Automating the programming knowledge 

acquisition process 

By structuring the design process so tha t  the  types of 

knowledge required are made explicit, the  knowledge 

acquisition process can be made simpler [14], and the 

resulting knowledge base easier to maintain [20]. To this 

end we are using a problem solving architecture based 

tha t  of the RIME [24] and SOAR [12] systems, 

implemented using the ART expert system building tool 

[ I l l .  This architecture allows us to organize design 

knowledge into a hierarchy of problem spaces, 

representing program design tasks. Each problem space 

consists of a set of operators for performing the task 
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represented by the space. In the Bauhaus, a problem 

space is associated with each program description that 

the system has in its knowledge base; the task 

represented by the problem space is that of refining the 

program description until i t  is sufficiently detailed to 

allow a code generator to translate i t  into code in the 

target language. The design process in the Bauhaus 

occurs in the following way: 

Select the initial design problem: the 
user copies and edits an initial program 
description from the set of program 
descriptions in the knowledge base using a 
structure editor, making i t  the cw9.ent 
description. The initial problem space is 
that  associated with refining this description. 

Propose operators: the Bauhaus 
determines what operators are applicable to 
the current description. 

Choose an operator: the Bauhaus chooses 
an operator from the proposed set using 
operator preferences and constraints 
associated with the problem space, and 
implemented as ART production rules. User 
interaction is requested when the system 
reaches an impasse, where either no operator 
is known to apply, the system is unable to 
derive a preference for a specific operator, or 
the system’s preferences are inconsistent [12]. 
This interaction takes one of two forms: 

0 the user chooses a proposed operator 
for the system to apply; or 

0 the user edits the current program 
description, in which case we return to 
step 2. 

4. Apply the chosen operator: the Bauhaus 
applies the chosen operator to the current 
description. The operator may: 

0 select a new problem space, 

0 recurse into a problem subspace, 

0 refine the current description, 

0 signal that  the task for the problem 
space is complete, or 

0 sigiial that  the task cannot be siiccessful 
coni p I e t e d . 

We then return to step 2. 

The design process terminates when the top-level task of 

refining the initial program description is successfully 

completed. This occurs when the description is detailed 

enough to allow the generation of target language code 

to  occur. Given this problem s0lvii.g architecture, we 

now discuss the knowledge acquisition mechanisms used 

to obtain the descriptions, operators, operators 

preferences and constraints used in the design process. 

3.1.1. Acquiring descriptions 

Our representation of domain objects and operations 

uses a description language, implemented in ART 

schemata, that  is similar to KRYPTON 1171. New 

descriptions of domain objects and operations are 

created from existing descriptions using the copy&edit 

technique espoused by Lenat in the CYC system, 

[13] and are placed in the appropriate location in a 

subsumption hierarchy through an automatic classifier 

This use of description copy&edit together with 

automatic classification reduces the effort required to 

extend the domain language used to describe systems, by 

fostering reuse of existing domain languages in the 

creation of new domain languages. Using a subsumption 

hierarchy of descriptions as the organizing framework for 

the representation of objects and operations supports 

user access for copy&edit actions through a retrieval-by- 
reformulation browser similar in design to ARGON [IS]. 

Retrieval-by-reforinidation will permit a naive user of 

the Bauhaus to find a description needed for a 

[8]. 

copycedit action inore easily than using a tradition 

query mechanism [‘33]. 

3.1.2. Acquiring operators, operator preferences, 

and constraints 

M h n  the user perform a manual edit of a description 

in response to ail impasse, the Bauhaus will create an 

operalor whose condition is the current description and 

whose action is the manual editing action. Operator 

preferences are acquired by recording the conditions 

under which a user makes a selection from a set of 
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operators during an impasse where n o  operator is 

preferred. Constraints are acquired when a user 

manually rejects the application of a n  operator, causing 

the Bauhaus to backtrack to the previous problem 

solving state. This type of knowledge acquisition 

through the observation of manual programming steps 

taken by the user can be characterized as a l e a r n i n g  

a p p r e n t i c e  approach [15]. In this respect, the  Bauhaus is 

similar to the VEXED VLSI design system [22]. 

3.2. Using an object-oriented development 

methodology 

By using object-oriented design (OOD) [SI, we can 

decrease t h e  level of effort required to implement a code 

generator tha t  takes a sufficiently detailed program 

description and produces compilable target language 

code. This is due to  the natural correspondence between 

the  world and its model in an object-oriented framework 
In the Bauhaus, the world is the set of target 

language software components and code templates and 

the model is the set of descriptions of objects and 

sequences of operations in a n  application program. 

Ada's language level support of abstract da ta  types and 

the existence of commercially supported reusable 

software component libraries constructed using OOD 

principles [6] make it our first choice as a target 

language in the Bauhaus system. The mapping between 

thc description of a n  program and its realization in Ada  

code and the generation of the main subprogram in 

which the  program objects are scoped is straightforward. 

We believe t h a t  the  Bauhaus could easily be extended to 

support other languages with similar OOD features as 

target languages (e.g. Smalltalk, Objective-C, or ART). 

[7]. 

4. System status and limitations 
Implementation of the Bauhaus is currently underway 

using ART running on a Symbolics Lisp machine under 

the Genera 7.1 environment. Support for Ada 

compilation and library management is provided by the  

Symbolics Ada programming environment. AS of July 
I 

1987, ART-based representations for descriptions, 

operators, operator preferences and constraints have 

been designed, the problem solving architecture and 

basic knowledge acquisition algorithms have been 

designed and implemented, and the  target language 

reusable components library has been selected. The  user 

interface is currently under construction, and the 

domain analysis for the demonstration domain, orbital 

flight simulation, is underway. We plan to demonstrate 

the use of the Bauhaus in  the construction of a D-SAPS 

for this domain in the first quarter of 1988. 

In the current design of the Bauhaus, there are a 

number of issues relevant to D-SAF'Ss that  we do not 

address: 

Lifecycle issues: the Bauhaus is only useful 
as a programming-in-t he-small environment, 
and ignores programming-in-the-large issues 
(e.g. version control). These would have to be 
addressed in a production-quality system. 

Persistent object bases: the Bauhaus has 
no provision for saving session s ta te  in a 
more sophisticated manner than simply 
saving changes out  to a text file. W e  are 
looking to work on object-oriented databases 
to provide an answer here [4]. 

Automated algorithm synthesis: the  
Bauhaus will always reach a n  impasse if a 
programming task requires algorithm design. 
However, the  architecture should be 
extensible to encompass this kind of problem 
solving (e.g., see the work by Steier on the 
Cypress-Soar and Designer-Soar algorithm 
design systems 121)). 

5. Conclusion 
There is evidence tha t  domain-specific automatic 

programming is a viable approach to increasing software 

productivity. To make this approach a practical one, 

the task of building and extending D-SAPS must be 

made simpler. As described above, we plan to 

accomplish this by improving the knowledge acquisition 

and software engineering methodologies used in 

constructing D-SAPS. Our ultimate goal is a production- 
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quality system that could be described ils an 

"application generator generator"; i.e., a knowledge- 

based environment for the construction of special- 

purpose systems for the generation of applications 

software by end-users. Such a system could be available 

to systems analysts and designers i n  a DP/MIS 

organization for use when an applications programming 

task occurs frequently enough to merit the creation of a 

D-SAPS. 
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